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We report results from a simulated annealing study of a coarse-grained model for block copolymers.
For sufficiently slow cooling rate, the system develops a well-defined lamellar structure by avoiding the
formation of defects. We show that the strong segregation limit of the model is computationally accessi-

ble when the interface thickness is small enough.

PACS number(s): 64.75.+g, 64.60.Cn, 61.41.+¢, 64.60.My

In a block copolymer (BCP) melt, phase separation
proceeds in a most interesting fashion [1,2] due to the
special architecture of the polymer molecules comprising
the melt. For example, consider a di-block copolymer
melt that is composed of long chain molecules consisting
of two covalently bonded subchains of constituent mono-
mers of the A4 type and B type. If these two species are
mutually incompatible, phase separation occurs at low
temperatures. This phase separation, however, cannot
proceed to a macroscopic scale due to the covalent bond
between the A-type and B-type subchains. The state of
the segregation is controlled by the product YN where y
is the A4 -B segment-segment Flory interaction parameter
and N is the chain length. If YN is less than a critical
value (typically of the order of 10), entropic factors dom-
inate and the copolymer exists in a disordered state. On
the other hand, an order-to-disorder transition takes
place for larger values of Y N. One finds that in the or-
dered state, the system can form periodic lamellar, spher-
ical, or cylindrical structures, depending on the relative
chain length of the two cobonded polymers. The distinc-
tive properties of these structures have been attracting a
lot of interest recently, due, in part, to the great techno-
logical importance of block copolymer materials. We
will consider the symmetric case here, so that the ordered
structure is given by a periodic lamellar mesophase. It
has been found experimentally that the equilibrium mean
thickness D of these microdomains scales with the molec-
ular weight N of the copolymers as D ~N® When the
BCP system is in the ordered state but very close to the
order-disorder transition point, it is said to be in the
weak-segregation limit. This weak-segregation limit is
characterized by a diffuse interface between the 4 and B
lamellae, and experiments [3] in this limit yield 6=1. On
the other hand, for yN >>10, energetic factors dominate
and the ordered domains are characterized by a very
sharp interface and almost flat concentration profiles. In
this case the system is in the strong-segregation regime
and 6= 1 has been observed in experiments [4,5].

Theoretical studies of phase separation in block copo-
lymers can also be divided in two general categories, deal-
ing with the weak-segregation limit [6,7] and the strong-
segregation limit [8-10], respectively. In the weak-
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segregation limit one usually neglects chain stretching,
and mean-field theories in this limit correctly identify
0=1. Since composition fluctuations play a major role
near the order-disorder transition, applicability of these
mean-field theories near such a critical point has been
questioned recently [5,7,11]. Theories valid in the
strong-segregation limit are reasonably successful in pre-
dicting domain structure and in particular a value of %
for the exponent 6.

We concentrate on a recently proposed phenomenolog-
ical model [12-14] for the phase-separation dynamics of
the block-copolymer system. In this model, one starts
from a coarse-grained description of the ordering process
in a similar fashion to the Cahn-Hilliard (CH) model [15]
used to study phase separation in binary alloys. In the
CH model, one writes down an order-parameter evolu-
tion equation in terms of a functional derivative of a
coarse-grained free-energy functional, given usually by a
Ginzburg-Landau expression. The fact that the equilibri-
um configurations in a block copolymer system are made
out of microdomains is incorporated [12—14] by adding a
long-range interaction in the model free-energy function-
al in the following way:

Fl81= [ dr | =S¢+ gt vy

+B [ dr'Gir,r)¢r,1) |, (1)

where b, u, and K are usual parameters of the Ginzburg-
Landau model and B is a new phenomenological parame-
ter which characterizes the BCP system. In the above
equation G (r,r’) is the Green’s function for Laplace’s
equation

V3G (r,r')=—8(r—r") (2)

with a suitable boundary condition. Then, the evolution
equation for the conserved order parameter [16] can be
written down in a CH scheme [17] as

UL — MV —b+us’~KV$]—B . 3
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This equation is the same as the CH equation except for
the presence of the —B¢ term. This last term, —B¢,
makes the ¢ =0 state more stable than that with ¢70 in
the absence of spatial gradients. Thus, the domain size
saturates at an equilibrium value after an initial incre-
ment with time. Oono and Bahiana [13,14] have studied
a cell-dynamics [18] version of Eq. (3) in two dimensions
in the weak-segregation limit. They empirically conclude
that B is proportional to N ~2 and on this basis find 6= I
They have not been able to probe the strong-segregation
limit of this model.

In this paper, we carry out a numerical study of the
above model proposed by Oono and his group and
demonstrate that the physically correct strong-
segregation limit of the model is computationally accessi-
ble in two dimensions. However, it is important to note
that in order to show this, we have had to use a simulated
annealing technique, in order to form a well-defined
lamellar structure. We find that when the interface
thickness is small enough, the coarse-grained model
yields the characteristic exponent for the strong-
segregation case, whereas the weak-segregation exponent
is achieved for a diffuse interface. We compute 6 and find
that when the interface is sharp enough, the strong-
segregation limit can be reached, yielding a value of
0= 2%, as seen in experiments.

Equation (3) can be written in a simpler form after re-
scaling [19] and the resulting equation reads

LD — 19— gt~ V)~ s, @

where € (~N ~2) is the only parameter of the model. We
numerically integrate Eq. (4) by using a first-order Euler
scheme in a two-dimensional lattice using a time step
6t=0.025 and mesh size 6¥r=1. We choose the initial
values of ¢ to be uniformly distributed between —0.1 and
0.1 with the order parameter strictly equal to zero.

When quenched from such an initial configuration, the
system shows ordering and the corresponding domain
structure is shown in Fig. 1. This “labyrinthine” struc-
ture [20] coarsens a little bit as time passes but a well-
defined lamellar structure does not arise even at a very
late time. This type of behavior is seen in previous simu-
lations by Oono’s group and in experiments on block
copolymers [2] and ferrimagnetic garnet films [20]. It has
been suggested [13] that the situation might be different
in three dimensions, since the interface is always rough in
two dimensions. However, previous numerical studies in
three dimensions [14,19] failed to find any ordered lamel-
lar structures produced by sudden quenches. The
disclination-type defects pin the system in the la-
byrinthine state also in three dimensions and this seems
to happen in the presence of thermal noise as well [14].
In view of these results, Oono and Bahiana conclude that
hydrodynamic effects must be important to obtain lamel-
lar structure. They numerically study the effect of hydro-
dynamic interactions [14] in the formation of lamellar
patterns in a Hele-Shaw cell and find that a symmetry-
breaking flow field induces lamellar order.

We take a different approach. We realize that in order
to straighten out the lamellae, transport of many polymer
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FIG. 1. A typical morphology of the block copolymer system
after a rapid quench from high temperature for e=0.01.

chains is necessary from that part of the system where
the interface has a positive curvature. This becomes
prohibitively difficult with only a diffusion mechanism at
hand, once the microdomains are established. In order to
allow the system to reorganize slowly into the lamellar
phase while the ordering is still taking place, we carry out
a simulated annealing procedure instead of a rapid
quench. This simulated annealing mechanism is a well-
known procedure [21] for obtaining the lowest-energy
“ground states” in disordered systems [22,23]. Here, as
an interesting application of this method, we use it to
avoid the formation of defects. We add a thermal noise
term in the evolution equation [Eq. (4)] in the form of
Vs (r,t), where s is the strength of the noise term [24].
We start with a large value of s (s =0.5), so that the sys-
tem appears to be disordered [25] at this temperature.
We anneal the system for a time of ¢, =2000-4000 at
each temperature and then reduce the noise strength each
time by steps of 6s =0.025. In such a slow cooling pro-
cedure the formation of defects is reduced and the system
finally picks up the lamellar state as the ground state.
Such a lamellar structure is shown in Fig. 2 for a 64 lat-
tice with €=0.01. Even in this simulated annealing pro-
cedure, it is extremely time consuming to avoid forma-
tion of any defects when the system size is large and € is
small. Most of our results (at least for small values of €)
are thus confined to relatively small lattice sizes.

We next turn to the question of evaluating the ex-
ponent O for the lamellar structure. As we have men-
tioned earlier, Oono and his group found an exponent of
0=1 from their numerical study. We would like to
ascertain if the length scale is different when the lamellar
structure is formed instead of the labyrinthine structure,
and if this results in yielding the strong-segregation value
for the exponent 8. Since defect structure in various sys-
tems [16,20,26] showing stripe patterns is of much recent
interest, this sort of comparison of length scale can possi-
bly elucidate the defect structure in related materials.
When we compare the characteristic length, R (€), of the
patterns [27] in Figs. 1 and 2—where one structure
shows a labyrinthine pattern and the other shows a lamel-
lar pattern, we find that the characteristic length scale is
not too different (the characteristic length is about 10%
larger in the lamellar case) from one type of structure to
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FIG. 2. The same system in Fig. 1 produces this well-defined
lamellar structure by a simulated annealing procedure.

the other. This suggests that when quenched rapidly, the
system acquires the length scale first and then tries to
reorganize itself locally by getting rid of the defects.

In Fig. 3 we show a log-log plot of R (€) versus €. We
find that the overall best fit to the data yields an exponent
of —0.30%0.02, which, using the identification e~N72,
corresponds to 6~0.60. This number is somewhat small-
er than that expected for 6 in the strong segregation lim-
it. However, a straight-line fit to the last three points in
Fig. 3 yields an exponent of 0.33, which translates into
0=2. For these values of ¢, the interface is sharp enough
and the strong-segregation limit can be reached in the
model calculation. Carrying out such a computation for
even smaller values of € will be quite interesting for
confirming our results and for providing a totally
definitive answer, but unfortunately such computations
seem to be beyond reach at this point.

To conclude, we have carried out a simulated anneal-
ing study of a coarse-grained model of block copolymers
and found that, for a sufficiently slow cooling rate, the
system develops a well-defined lamellar structure by
avoiding the formation of defects. We expect that this
procedure will also yield well-defined lamellar structure
in similar models with a nonconserved order parameter
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FIG. 3. A log-log plot of the characteristic length R (€) vs €.
The slope of the straight line is given by —0.30+0.02, which
yields 6~0.60. However, the magnitude of the slope is still in-
creasing for smaller values of €.

[16]. As noted earlier, we find that when the interface
thickness is small enough, the coarse-grained model
yields the characteristic exponent for the strong-
segregation case, whereas the weak-segregation exponent
is achieved for small values of the parameter €. Such re-
sults for a one-dimensional version of the model con-
sidered here have been obtained recently [28]. One in-
teresting question now is whether the model can display
both the strong-segregation and weak-segregation limits
as a function of temperature (or noise strength) for a fixed
small value of €. Another interesting question is how the
defects creep in as the ordered lamellar structure melts by
a reverse quench. These questions will be addressed in
future publications.
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